a2 United States Patent

Sellers

US009182946B2

US 9,182,946 B2
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD OF GENERATING A COMPUTER
ARCHITECTURE REPRESENTATION IN A
REUSABLE SYNTAX AND GRAMMAR

(71) Applicant: Russell Sellers, Austin, TX (US)
(72) Inventor: Russell Sellers, Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/206,313

(22) Filed: Mar. 12,2014
(65) Prior Publication Data
US 2014/0282363 Al Sep. 18, 2014

Related U.S. Application Data

(60) Provisional application No. 61/800,272, filed on Mar.
15, 2013, provisional application No. 61/800,387,
filed on Mar. 15, 2013.

(51) Int.CL
HO4L 12/42 (2006.01)
GOGF 19/00 (2011.01)
GOGF 17/50 (2006.01)
GOGF 15/16 (2006.01)
GOGF 17/00 (2006.01)
GOGF 17/25 (2006.01)
GOGF 1122 (2006.01)
GOGF 9/44 (2006.01)
GOGF 9/45 (2006.01)
GOGF 9/445 (2006.01)
GOGF 7/04 (2006.01)
GOGF 1730 (2006.01)
G06Q 10/00 (2012.01)

(52) US.CL

CPC .. GOGF 8/20 (2013.01); GOGF 8/31 (2013.01);
GOGF 8/41 (2013.01); GO6Q 10/00 (2013.01)

(58) Field of Classification Search

CPC GOG6F 17/5068; GO6F 17/5072; GO6F
17/5077; GOGF 17/30569; GOG6F 11/1433;
GOG6F 11/2247; GOG6F 8/10; GOGF 8/60;
GOGF 8/63; GOGF 8/314; GOG6F 9/44505;
GOG6F 21/6218; GOG6F 8/61; GO6F 17/3089;
GOG6F 11/263; GOG6F 17/5045; GOGF 8/36;
GOGF 8/47; GOGF 8/447; GO6Q 10/087

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,754,409 A 6/1988 Ashford et al.

5,701,400 A 12/1997 Amado

5,877,966 A * 3/1999 Morrisetal. 716/136

6,088,659 A * 7/2000 Kelleyetal. 709/203

6,199,068 B1* 3/2001 Carpenter 370/449

6,226,656 Bl 5/2001 Zawadzki et al.

6,247,128 B1* 6/2001 Fisheretal. 717/178
(Continued)

FOREIGN PATENT DOCUMENTS

DK W09948031 Al 9/1999

Primary Examiner — Don Wong
Assistant Examiner — Anibal Rivera
(74) Attorney, Agent, or Firm — Hulsey Hunt & Parks P.C.

(57) ABSTRACT

Techniques and a system for creating a vendor independent
computer language and compiling the language into an archi-
tecture specification language allowing for taking a source
data stream (file, wsdl, xml) and passing thru a language
parser, populating a storage medium with a plurality of tech-
nical inputs and vendor technical specifications for generic
technologies and probable technologies required for desired
architectures generated by the language parser, and optimiz-
ing the inputs and creating relationships between technolo-
gies and groups of technologies and storing results in said
storage medium.

19 Claims, 6 Drawing Sheets

US 9,182,946 B2

Page 2
(56) References Cited 2004/0046789 A1* 3/2004 Inanoria 345/748
2004/0068716 Al* 4/2004 Stevens 717/140
U.S. PATENT DOCUMENTS 2004/0158823 Al* 8/2004 Saint-Hilaire etal. 717/140
2004/0168160 Al* 82004 Zatloukalc........ 717/140
6,430,741 B1* 82002 Mattson et al. 717/154 2004/0181500 Al ~ 9/2004 Huelsman et al.
6,526,423 B2 2/2003 Zawadzki et al. 2004/0268327 Al™* 12/2004 Burger ... 717/140
6.651.062 B2 11/2003 Ghannam et al. 2005/0004942 A1* 1/2005 Madsen et al. 707/104.1
7,031,907 B1* 4/2006 Passaretti etal. 717/105 2005/0071825 Al* 3/2005 Nagarajetal. ... 717/142
7,188,333 Bl 3/2007 LaMotta et al. 2005/0080648 Al 4/2005 Huelsman et al.
7278133 B2* 10/2007 Roman etal. o.oo........ 717/120 2005/0096937 Al* 5/2005 Subashetal.ccoccooo..... 705/1
7,376,939 B1* 5/2008 Nayak etal.ccccooo....... 717/144 2005/0154550 Al* 7/2005 Singh et al. 702/108
7,587,379 B2 9/2009 Huelsman et al. 2005/0289485 Al* 12/2005 Willis 716/1
7.596,518 B2* 9/2009 Rappaport etal. 705/29 2006/0004802 Al* 1/2006 Phillips et al. 707/101
7725817 B2* 5/2010 Krasunetal. ... 7177143 2006/0095274 Al* 5/2006 Phillips et al. o 705/1
7,814,551 B2* 10/2010 Darweesh et al. .. 726/26 2007/0050704 A1* 3/2007 Liu ..o 715/513
7,818,729 Bl1* 10/2010 Plumetal. ... CT717/140 2007/0113221 Al* 5/2007 Liuetal. 717/143
8055604 B2 11/2011 Huelsman et al. 2008/0222734 Al* 9/2008 Redlichetal.cco.......... 726/26
8,650,506 B2* 2/2014 Erickson et al. w.o..... 715/849 2008;0250360 AL 10;2008 Wié}is ~~~~~~~~~~~ [7 /16/2
* : 2008/0250390 A1* 10/2008 Feblowitz et al. 717/114
g’gzg’ggg gi* %8}‘5‘ g:fgéf;fgf;l """""""" ;};ﬁgi 2009/0048889 Al* 2/2000 Arinezetal. 705/8
2003/0055820 AL* 3/2003 Aleen R 207/ 2011/0173596 Al* 7/2011 Vorbach 717/146
5003/0149934 AL* 82003 Wfrder{ """"" s 2012/0060150 Al* 3/2012 Pechanec et al. .. 717/140
2013/0080997 Al* 3/2013 Dattathreya 717/121
2003/0167444 A1* 9/2003 Zorc ... o 715/513
2003/0208743 Al* 11/2003 Chongetal. ..o 717/106 * cited by examiner

US 9,182,946 B2

Sheet 1 of 6

Nov. 10, 2015

U.S. Patent

wissds
ypasusslivupy ey
veiag a1t upRESURL
&%«mﬁ%mﬁ% mﬁﬂm%wx e B uoREsedy
wieys iy Y L PR B
ntuabeueg - SWHSAS LR
vogmnByuosy N -
SWHSAS BRI g
T X
JaawiBug
ziy) y sapam
wisshs e 5 /
sy N 3
REHI0UY k N .
ssaUsng T Rl in gl
<UIRISAS [RLLagKEN z,/ SHNOY RERANENGe
L y kY s
ST Wiy o > : -
e ST gio0g SImORNY QIO
R
/o..
QI
wayshy s) «ISIOR SSIUING*
sopfppuy 4 O 3/ NS 4
ssausng
“HHIIRAR jeLiapan whjshs
A Bomen asiieg

sciIRISAR JRUIRIRSY

¢ IREmos weysky 19407 4B s880014 SSeusNg

U.S. Patent Nov. 10, 2015 Sheet 2 of 6 US 9,182,946 B2

P B
{mcter make new |

Business = -
Decision (
N &

[Actor mskes 3
i new Technical
i Crecigion

L

{ &etor oreates !
Haw depioyipent
fequirsmenis I

_____________________________ s

£
#

" Betor audits
fegacy
deploymant
X, .

E,~ cior documenty
fegacy
deployrent

" Actor reviews |
deployment
reguirements

Actoreewizes

st ¢ 5
: 152
-
For sach Nt
{ Actor sxscutes Actar creates |
| impismentation opsm@_gn
] instructions instructions
3 €
Actor ersates i -,
-4 impl vhation et 2 Actor sxecuies
izt speration
| s & instructions

U.S. Patent Nov. 10, 2015

Sheet 3 of 6

sol Menegs Sperifoatien #

R

.

e Muin Pags

k:

g

£

A AT

sheet Bubag
Speailicatan

shbai

R
Jud

© Parse s

s
¢
2

US 9,182,946 B2

US 9,182,946 B2

Sheet 4 of 6

Nov. 10, 2015

U.S. Patent

pes

e o

S S AT S A A e e

mawmuwnmmm

,5,,
..»74 Y
&0
{ N
N ;

£
—

m uogrageds sleusy ps

US 9,182,946 B2

Sheet 5 of 6

Nov. 10, 2015

Fiaphy

Sis

aEF

R ¥

i
t
v
i
0
t
v
;

fER00ts
. vonRsiendn

R

‘ ‘
wopsontidy . uogEIpOSEy
s,

tera

U.S. Patent

US 9,182,946 B2

Sheet 6 of 6

Nov. 10, 2015

U.S. Patent

~
Y
B

i LT ET I

SUTISON

Wl

[S
az
]
]

FIUSIRIBIRY

RSN

(22

MEE. o R
598
L
- mm JOBSIN0I
E Bupoiorinuely
- | i
- e Y Honid
H08830044 Joesa0lg L
e Bupdwon| | voperpundo Jasieg
» : , ! uo abenbuey

(el
i
4

¢ wapsy dw

US 9,182,946 B2

1
METHOD OF GENERATING A COMPUTER
ARCHITECTURE REPRESENTATION IN A
REUSABLE SYNTAX AND GRAMMAR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application Ser. No. 61/800,272, and U.S. Provisional Patent
Application Ser. No. 61/800,387, both filed on Mar. 15,2013,
which are hereby incorporated by reference in its entirety.
Other related applications having common inventorship and/
or ownership as may mentioned throughout this disclosure,
are also incorporated by reference in their entirety.

FIELD

The disclosed subject matter relates to methods of gener-
ating a computer architecture representation in a reusable
syntax and grammar. As aresult the invention also includes an
enhanced means of creating artifacts such as high-level
design documents, bills of materials and traditional drawings.

DESCRIPTION OF THE RELATED ART

The traditional method is for users to provide an engineer
with goals, decisions and constraints and for the engineer to
use vendor specification and his individual knowledge and
experience to generate a high-level design. A user makes a
business decision to deploy a particular application or tech-
nology. The user must make a series of business and technical
decisions including if they will perform a completely new
deployment and design or use an existing one. The require-
ments, decisions, and constraints are gathered, reviewed,
accepted. The accepted requirements, decisions, and con-
straints are presented to an engineer who uses his knowledge
and reference material to generate a high-level design. The
problem that this creates is that high-level designs can be very
specific to a customer and technology. If the end user decides
to transition from one technology to another they have to have
another design created potentially by a completely different
engineer with the appropriate knowledge based on the desired
technology. A significant amount of the information gathered
and generated for the initial design is not retained and usable
for subsequent designs.

SUMMARY

Techniques here disclosed include a method and system for
generating a computer architecture representation in a reus-
able syntax and grammar. As a result the invention also
includes an enhanced means of creating artifacts such as
high-level design documents, bills of materials and tradi-
tional drawings.

The present invention provides a method of generating a
computer architecture representation in a reusable syntax and
grammar, wherein a plurality of language definitions that
include at least a first language definition for technical speci-
fications and attributes. This information is typically submit-
ted by an engineer, and comes in the form of multiple speci-
fications and may include vendor technical specifications,
best practices, and corporate best practices. Technical Speci-
fications for applications may include but are not limited to
details such as: memory require, disk space required. Tech-
nical specifications for operating systems may include but are
not limited to: hardware limitations such as required physical
memory, processor type. Industry best practice details may

10

15

20

25

30

35

40

45

50

55

60

65

2

include but are not limited to: that although the vendor rec-
ommends a certain amount of memory for an application, the
industry best practice is 2 times that amount.

The term “technical specification” is understood herein as
any data that is provided by an engineer or manufacturer,
detailing technology including but not limited to operating
system requirements, application requirements, or hardware
requirements. As an exemplary scenario, a technical specifi-
cation for Windows 2012 Server may specify minimum pro-
cessor: 1.4 Ghz 64-bit processor, minimum ram: 512 MB,
minimum disk: 32 GB.

In accordance with an embodiment of the invention the
method provides a second language definition for business
details and attributes. This information is typically provided
by the user and includes but not limited to goals, decisions,
constraints, site details and user details. A decision may
include but are not limited to: a selection of a particular
vendor. Business details may include but are not limited to:
number of locations, size of locations, and users at locations.

The term “business details” and “business attributes” is
understood herein as any data that is provided by a user that is
specific to their business environment. As an exemplary sce-
nario, a business attribute may specify to use the industry best
practice over the vendor specification.

In accordance with a further embodiment of the invention
the method provides a third language definition supplemen-
tary details and attributes. This information is custom data
that can be customer or implementation dependent. An
example supplemental detail may be able to be to a specific
vendor or technology bias.

The term “supplementary details” and “supplementary
attributes” is understood herein as any data that is provided by
a user as custom data. As a exemplary scenario, a user may
specify a operating system or manufacturer bias. such as
Microsoft is a preferred vendor. Algorithms selected at runt-
ime may use this supplemental data for decisions.

Inan embodiment of the invention, the method provides for
parsing and performing semantic grammar analysis for each
of'the language definitions that consist of reading each line of
input, parsing and performing semantic grammar analysis of
attributes of the specification, elements or lines, element lists/
groups and attributes of the list/group, individual elements or
lines and attributes of the elements, and finally individual
lines or elements within a list/group and any attributes of that
element and produce an intermediate representation as reus-
able individual elements and attributes. In Embodiments of
the invention the method includes a means of deconstructing
these specifications into re-usable elements, which provides
the advantage that elements may be re-used in a plurality of
designs.

In an embodiment of the invention, the method has a means
for dynamically compile and generate an architectural speci-
fication based on user selected data, the produced intermedi-
ate representation, and an algorithm selected at run time that
consists of reading each input variable and passing those
variables to the specified algorithm. The algorithm processes
the individual elements and attributes based on the defined
algorithm. The output of the selected algorithm is then passed
to the compiler to generate the architecture specification in a
specific language definition.

The term “architecture representation” is understood
herein as a data structure for storing and representing the data
contained in a high-level deign in a generic reusable way.

In accordance with a further embodiment of the invention,
the method has a means for dynamically compile and gener-
ate an architectural specification based on user selected data,
the produced intermediate representation, supplemental

US 9,182,946 B2

3

details and attributes, and an algorithm selected at run time
that consists of reading each input variable and passing those
variables to the specified algorithm. The algorithm processes
the individual elements and attributes based on the defined
algorithm. The output of the selected algorithm is then passed
to the compiler to generate the architecture specification in a
specific language definition.

In accordance with a further embodiment of the invention,
the method provides a means for dynamically generating
industry standard technical documents from a generated
architecture specification.

In another aspect the invention is directed to a system
implementing the above described language specifications,
methods and compiler mechanism.

Embodiments of the invention have the advantage that
different architectures are capable of being generated rapidly
based on a broader set of technical and engineering inputs
than the conventional methods.

In accordance with an embodiment of the invention, the
system further provides means for receiving a source data
stream of input information from the user. Memory means
allow for a data structure instantiating code segment that
establishes a storage record in memory, as well as for storing
technical input records, business input records, relationships,
and architecture specification language representation. A pro-
cessor means operates for parsing and performing semantic
grammar analysis for each of the language definitions, as well
as recording parsed results to the storage medium. The pro-
cessor means further enables executing a selected optimiza-
tion function to optimize and create relationships and saving
the results to the storage medium. The disclosure includes
executing a compilation function to compute and create an
architectural representation in the specified syntax and gram-
mar

In accordance with a further embodiment of the invention,
the system further provides means for receiving a source data
stream of input information from the user. Memory means
enable a data structure instantiating code segment that estab-
lishes a storage record in memory and for storing technical
input records, business input records, relationships, supple-
mental details and attributes, and architecture specification
language representation. A processor means operates parsing
and performing semantic grammar analysis for each of the
language definitions including supplemental details and
attributes, recording parsed results to the storage medium,
executing a selected optimization function to optimize and
create relationships and save results to the storage medium, as
well as executing a compilation function to compute and
create an architectural representation in the specified syntax
and grammar.

These and other advantages of the disclosed subject matter,
as well as additional novel features, will be apparent from the
description provided herein. The intent of this summary is not
to be a comprehensive description of the claimed subject
matter, but rather to provide a short overview of some of the
subject matter’s functionality. Other systems, methods, fea-
tures, and advantages here provided will become apparent to
one with skill in the art upon examination of the following
FIGURESs and detailed description. Itis intended that all such
additional systems, methods, features and advantages be
included within this description, be within the scope of the
accompanying claims.

BRIEF DESCRIPTIONS OF THE DRAWINGS

The features, nature, and advantages of the disclosed sub-
ject matter will become more apparent from the detailed

10

15

20

25

30

35

40

45

50

55

60

65

4

description set forth below when taken in conjunction with
the drawings in which like reference characters identify cor-
respondingly throughout and wherein:

In the following, embodiments of the invention are
explained in greater detail by way of example only, making
reference to the drawings which:

FIG. 1 provides a UML use case diagram being illustrative
of an embodiment of a method of the invention.

FIG. 2 is a UML activity diagram being illustrative of the
conventional workflow for creating a high-level design.

FIG. 3 is a UML activity diagram being illustrative of an
embodiment of a method of submitting a specification for use
as part of the body of reusable information.

FIG. 4 is a UML sequence diagram being illustrative of an
embodiment of a method of processing or deconstructing a
specification.

FIG. 5 is a UML sequence diagram being illustrative of an
embodiment of a method of the invention.

FIG. 6 is a UML component diagram being illustrative of
an embodiment of a computer system of the invention

APPENDIX 1 shows exemplary grammar for a specifica-
tion file

APPENDIX 2 shows exemplary grammar for a specifica-
tion file

APPENDIX 3 shows a shows exemplary implementation
of'the grammar in APPENDIX 1 but in xml as an alternative
format.

DETAILED DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

FIG. 1 is illustrative of an embodiment where an actor
Element 106 and shows the information flow from the engi-
neer into the method represented as Element 100. FIG. 1 also
shows other actors that may interface with the method in a
exemplary embodiment.

FIG. 2, is illustrative of an embodiment where an actor 102,
104, or 106 from FIG. 1 makes a business decision to deploy
aparticular application or technology 120. An actor 102, 104
or 106 from FIG. 1, takes that business decision as input and
make a series of technical decisions 122. The actor must make
a decision 124 if the deployment is a new deployment or a
deployment over an existing “Brown Field”. If the deploy-
ment is a new deployment 126 then a new set of requirements
are developed. If there is an existing deployment the actor
must make a decision 128 to reuse existing requirements. If
the actor chooses not to reuse existing requirements then the
deployment is treated as a new deployment 126 and a new set
of requirements are developed. If the actor chooses to reuse
the existing requirements then an audit of the legacy deploy-
ment must be performed 130 and the requirements docu-
mented 132. The actor reviews the resulting requirements 134
for acceptance 138. If they do not meet the business decisions
120 and technical decisions 122 then they are not accepted
138 the requirements are revised 136. If the requirements are
accepted 138, the actor generates by hand a high-level design
document 140 based on his individual knowledge and expe-
rience. An actor then takes this high-level design, and for each
requirement contained in the high-level design 142 he deter-
mines the necessary equipment, creates a Bill of Material
146, creates a low level design 150, and creates implementa-
tion instructions 148. To deploy the system, for each system to
be deployed 144, the actor takes the implementation instruc-
tions 148 and executes them 152 to create the systems. He
then creates operating instructions 156 for operating the sys-
tems and executes those 154 to place the system under opera-
tional management.

US 9,182,946 B2

5

FIG. 3 is illustrative of an embodiment where an actor
submits a specification for use by the exemplary embodiment
as part of the body of reusable information. Elements 160 thru
168 represent an interaction with the user interface of the
system. An actor 106 from FIG. 1 attempts to access the
system 160. If authentication 162 fails, the access is denied
164. If authentication 162 is successful, the main page 166 is
displayed. The user selects select a specification file 168 and
selects a specification file for use 170. The user then submits
the file 172 for use. Lexical and syntactical analysis is per-
formed on the submitted data to determine if the data is a valid
structure and grammatical syntax 174. If the lexical or syn-
tactical analysis fails there is a language or structure problem
176. If the lexical and syntactical analysis passes then the file
is parsed 178 and the information retained for later use. A
positive confirmation is provided of acceptance of the speci-
fication 180.

FIG. 4 is illustrative of an embodiment where a user 200
interacts with the system via the Submit Specification bound-
ary 202. The Create New Specification control 204 mediates
between the Submit Specification boundary 202 and the
Specification entity 206 and orchestrates the behavior includ-
ing but not limited to the parsing of the lists, elements and
execution of the algorithms.

FIG. § is illustrative of an embodiment where an actor
interacts with the system via the System boundary 212. The
Language Parser control 214 receives the inputs from the
System boundary 212 and processes the inputs. The Lan-
guage Parser control 214 loops thru the specification and
extracts the inputs. If supplemental data is present in the
source data stream the Language Parser control 214 loops
thru the specification and extracts supplemental data and
attributes. Once the inputs have been extracted the Language
Parser control 214 persists the inputs to Persistence actor 222
via the persistInputs() message 220. The Language Parser
control 214 then passes control to the Optimization Processor
control 226 to performOptimizations() 228 of inputs and
createRelationships() 230. The Optimization Processor con-
trol 226 then persistOptimizations() 232 and persistRelation-
ships() to persist the data to the Persistence actor 222. Once
the Optimization processor control 226 has persisted its data
it passes control to the Compile processor control 236. The
Compile Processor control 236 produces either a Architecture
Specification entity 240 or a Manufacturing Application
entity 244 depending on the embodiment.

FIG. 6 is illustrative of an embodiment where a source data
stream object 252 is submitted to the computer System 250
via a computer network for processing. The Language Parser
component 254 is invoked and uses the system processor to
calculate and extract the inputs from the data stream. The
Language Parser component 254 persists its data to the Per-
sistence component 256 which may be a database or system
memory data structure. The Optimization Processor compo-
nent 258 is invoked to retrieve the inputs from the Persistence
component 256 and uses the system processor to execute an
optimization algorithm and create necessary relationships.
The Optimization Processor component 258 persists its data
to the Persistence component 256. The Compiling Processor
component 260 is invoked to retrieve the optimized inputs
and relationships from the Persistence component 256 and
uses the system processor to execute a compilation algorithm
to generate either an Architecture Specification artifact 262 or
a Manufacturing Applications artifact depending on the
embodiment. In a further embodiment of the system the
Manufacturing Processor component 266 will be invoked to

10

15

20

25

30

35

40

45

55

60

65

6

use the system processor to execute the Manufacturing Appli-
cations artifacts 264 to create the Deployed Systems artifact
268.

To facilitate the processing of specifications a new gram-
mar and syntax may be required. The listing in APPENDIX 1
and APPENDIX are examplary grammar for a specification
file that may be used as inputs to the methods described in
FIG. 3 and FIG. 4. The listing in APPENDIX 3 shows a
possible implementation of the grammar in APPENDIX 1 but
in xml as an alternative format.

In summary, the present disclosure provides a method and
system for creating a vendor independent computer language
and compiling the computer language into an architecture
specification language, including the steps of taking a source
data stream (FILE, WSDL, XML) and passing thru a lan-
guage parser, populating a storage medium with a plurality of
technical inputs and vendor technical specifications for
generic technologies and probable technologies required for
desired architectures generated by the language parser, opti-
mizing the inputs and creating relationships between tech-
nologies and groups of technologies and storing results in the
storage medium.

The processing features and functions described herein
provide for generating a computer architecture representation
in a reusable syntax and grammar. The disclosed subject
matter provides an enhanced means of creating artifacts such
as high-level design documents, bills of materials and tradi-
tional drawings that may be implemented in various manners.
Moreover, the process and features here described may be
stored in magnetic, optical, or other recording media for
reading and execution by such various signal and instruction
processing systems. The foregoing description of the pre-
ferred embodiments, therefore, is provided to enable any
person skilled in the art to make or use the claimed subject
matter. Thus, the claimed subject matter is not intended to be
limited to the embodiments shown herein but is to be
accorded the widest scope consistent with the principles and
novel features disclosed herein.

APPENDIX 1

Example Specification Language Structure

%token STRING
specification:
attribute__element requirement__element
| attribute__element requirement__element__list
requirement__element
5
attribute__element:
element TYPE literal
5
requirement__element_ list:
requirement_ element
| requirement__element__list requirement__element
5
requirment_ element:
element
5
element:
VALUE literal
literal:
STRING

US 9,182,946 B2
7 8

APPENDIX 2 APPENDIX 3-continued
Example Architecture Specification Language Structure Example XML specification
%token STRING <SubRequirementGroup>
architecturespecification: 5 <Requirement>
attribute__element deployment_ element <Value>Memory</Value>
| attribute__element__list deployment__element <Attribute>
| attribute__element deployment__element__list <Type>Sequence</Type>
deployment__element <Value>1</Value>
| attribute__element__list deployment__element__list </Attribute>
attribute element deployment element 10 <Attribute>
; <Type>Minumum</Type>
attribute__element__ list: <Value>2048</Value>
attribute__element </Attribute>
| attribute__element__list attribute__element <Attribute>
; <Type>Recommeded</Type>
attribute__element: 15 <Value>4096</Value>
element TYPE literal </Attribute>
; </Requirement>
deployment__element_ list: <Requirement>
deployment__element <Value>Disk</Value>
| deployment__element__list deployment__element <Attribute>
; <Type>Sequence</Type>
deployment__element: 20 <Value>2</Value>
DEPLOYMENT literal </Attribute>
| DEPLOYMENT literal TYPE literal <Attribute>
; <Type>Minumum</Type>
provider__element_ list: <Value>8G</Value>
provider__element </Attribute>
| provider__element__list provider__element 25 <Attribute>
; <Type>Recommeded</Type>
provider__element: <Value>20G</Value>
PROVIDER literal </Attribute>
| PROVIDER literal TYPE literal </Requirement>
; </SubRequirementGroup>
hypervisor_element_ list: 30 </RequirementGroup>
hypervisor__element </VendorTechnicalSpecification>

| hypervisor__element__list hypervisor__element

;
hypervisor__element:

HYPERVISOR literal ‘What is claimed is:
f HYPERVISOR literal TYPE literal 35 1. A non-transitory computer-accessible for creating a ven-
os clement list: dor independent computer language, comprising:
N os_element a data structure instantiating code segment for establishing
\ os_element_list os_element a storage record in memory having:
’ a technical identifier, the technical identifier providing
os__element: . . . B
0OS literal 40 identification for the following:
[OS literal TYPE literal hardware grouping;
; software grouping; and
application_list: combinations thereof;
application_element - a plurality of technical input records,
| application__element__list application__element
. 45 each of said plurality of technical input records main-
appn’caﬁonjlemem; taining a pointer in memory to said technical identi-
APPLICATION literal fier; and
‘ APPICATION literal TYPE literal a lexical and syntactical analysis algorithm, said lexical
- and syntactical analysis algorithm for determining
clement: NAME literal 50 said plurality of technical input records match a valid
| NAME literal TYPE literal structure and grammatical syntax.
literal: 2. The non-transitory computer-accessible medium of
STRING claim 1, further comprising computer instructions for:
passing a source data stream through a language parser;
55 and
APPENDIX 3 populatir}g a storage me?dium with at least a pgrtion of'the
plurality of technical input records an plurality of vendor
Example XML specification technical specifications;

- — said plurality input records and a plurality of vendor
<TechnicalSpecification . 60 technical specifications
xmlns:xsi=“http://www.w3.0rg/2001/XMLSchema-instance” "))
xsinoNamespaceSchemal ocation="TS.xsd"> for an architecture generated by said lexical and syntac-

<RequirementGroup> tical analysis algorithm.
<Value>Windows Server 2007</Value> 3. The non-transitory computer-accessible medium of
<Attribute> . o .. R
<Type>Sequence</Type> clalm.Z, .fL!rther comprising computer in ions .for. .
Value>1</Value> 65 optimizing at least a portion of said plurality of technical
</Attribute> input records and said plurality of vendor technical

specifications;

US 9,182,946 B2

9

creating relationships between said at least a portion of the
plurality of technical input records and said plurality of
vendor technical specifications; and

storing an optimized result in said computer-accessible
medium.

4. The non-transitory computer-accessible medium of

claim 2, further comprising computer instructions for:
further populating said storage medium with a business
input for a customer.

5. The non-transitory computer-accessible medium of

claim 2, further comprising computer instructions for:
further populating said storage medium with supplemental
attributes.

6. The non-transitory computer-accessible medium of

claim 5, further comprising
said lexical and syntactical analysis algorithm communi-
cating with said storage medium and coupled to a com-
pute network;
said lexical and syntactical analysis algorithm for pars-
ing said plurality of vendor technical specifications
and said plurality of technical input records into indi-
vidual inputs and value pairs; and

recording said individual inputs a value pairs to the
storage medium.

7. The non-transitory computer-accessible medium of

claim 2, further comprising computer instructions for:
a compiling processor communicating with said storage
medium and coupled to a computer network;
said compiling processor for retrieving at least one input
from the storage medium and providing a plurality of
technology choices based on said at least one input to
an architecture delivery server; and

said compiling processor for generating an architecture
in an architecture specification language based on the
said at least one input.

8. The non-transitory computer-accessible medium of

claim 7, further comprising computer instructions for:

an optimization processor communicating with said stor-
age medium and coupled to a computer network;

said optimization processor for optimizing said architec-
ture to provide an optimized architecture; and

said optimization processor for recording said optimized
architecture to the storage medium.

9. The non-transitory computer-accessible medium of

claim 8, further comprising computer instructions for:

said lexical and said lexical and syntactical analysis algo-
rithm communicating with said storage medium and
coupled to a computer network;

said lexical and syntactical analysis algorithm for parsing
ness inputs and business goals into individual inputs and
value pairs; and

said lexical and syntactical analysis algorithm for record-
ing said individual inputs and said value pairs to the
storage medium.

10. A non-transitory computer-accessible medium for cre-

ating an architecture specification language, comprising:

a data structure instantiating code segment that establishes
a storage record in memory, said data structure instanti-
ating code segment comprising:

an architecture specification identifier;

a plurality of technical input records and business input
records, each of said plurality of technical input records
and business input records maintaining a respective
pointer in memory to said architecture specification
identifier;

a lexical and syntactical analysis algorithm, said lexical
and syntactical analysis algorithm configured for deter-

5

10

15

20

25

30

40

45

50

55

60

65

10

mining said plurality of technical input records and busi-
ness input records matching a valid structure and gram-
matical syntax; and
a compiling algorithm, said compiling algorithm config-
ured for:
identifying at least one technology and input required to
create the architecture; and
compiling said architecture specification language rep-
resentation of architecture.
11. The non-transitory computer-accessible medium of
claim 10, further comprising computer instructions for:
passing a source data stream through a language parser;
and
populating a storage medium with the plurality of technical
input records and the plurality of vendor technical speci-
fications for architectures generated by the language
parser.
12. The non-transitory computer-accessible medium of
claim 11, further comprising computer instructions for:
optimizing at least a portion of said plurality of technical
input records and said plurality of vendor technical
specifications;
creating relationships between said at least a portion of the
plurality of technical input records and said plurality of
vendor technical specifications; and
storing an optimized result in said computer-accessible
medium.
13. The non-transitory computer-accessible medium of
claim 11, further comprising computer instructions for:
further populating said computer-accessible medium with
at least one business input and business goal definition
for a customer.
14. The non-transitory computer-accessible medium of
claim 11, further comprising computer instructions for:
further populating said computer-accessible medium with
supplemental attributes.
15. The non-transitory computer-accessible medium of
claim 14, further comprising computer instructions for:
a language parser communicating with said storage media
and coupled to a computer network;
said language parser for parsing vendor technical specifi-
cations and technical inputs into individual inputs and
value pairs; and
recording said individual inputs and said value pairs to the
computer-accessible medium.
16. The non-transit computer-accessible medium of claim
11, further comprising computer instructions for:
employing a compiling algorithm to retrieve at least one
input from the computer-accessible medium, suggest
technology choices based on a received business input
and business goal, and produce an architecture in an
architecture specification language.
17. The non-transitory computer-accessible medium of
claim 16, further comprising computer instructions for:
an optimization processor communicating with said com-
puter-accessible medium and coupled to a computer
network;
said optimization processor for optimizing at least parsed
inputs and creating relationships; and
recording those inputs to the computer-accessible medium.
18. The non-transitory computer-accessible medium of
claim 17, further comprising computer instructions for:
a compiling processor communicating with said computer-
accessible medium and coupled to a computer network;
said compiling processor for retrieving inputs from the
computer-accessible medium and providing technology
choices based on inputs to an architecture delivery

US 9,182,946 B2

11 12

server and generating an architecture in an architecture
specification language based on the inputs.

19. The non-transitory computer-accessible medium of

claim 18, further comprising computer instructions for:

a language parser communicating with said storage
medium and coupled to a computer network;

said language parser for parsing business inputs and busi-
ness goals into individual inputs and value pairs; and

recording said individual inputs and said value pairs to the

computer-accessible medium. 10

#* #* #* #* #*

